SCS ENGINEERS

Results of the 1st Quarter 2005 Groundwater Monitoring and Sampling Event

Former A-1 Rentals
458 West College Avenue
Santa Rosa, California
(Assessor's Parcel No. 010-441-011)
(NCRWQCB Case No. 1TSR364)

File Number 01203354.00

Prepared by:

SCS Engineers 3645 Westwind Boulevard Santa Rosa, California 95403

To:

Mr. Jim Tischler North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, California 95403

August 3, 2005

Mr. Jim Tischler August 3, 2005 Page ii

LIMITATIONS/DISCLAIMER

This report has been prepared for the Former A-1 Rentals site with specific application to a Quarterly Monitoring event for the property located at 458 West College Avenue, Santa Rosa, California. Field activities and sampling were conducted in accordance with the care and skill generally exercised by reputable professionals, under similar circumstances, in this or similar localities. No other warranty, either expressed or implied, is made as to the professional advice presented herein.

Access to the property and the surrounding area was and is limited by buildings, roadways, underground and above-ground utilities and other miscellaneous site and site vicinity features. Therefore, the field exploration and points of subsurface observation were and are somewhat restricted.

Changes in site use and conditions may occur due to variations in rainfall, temperature, water usage, or other factors. Additional information which was not available to the consultant at the time of this quarterly monitoring event or changes which may occur on the site or in the surrounding area may result in modification to the site that would impact the summary presented herein. This report is not a legal opinion.

We trust this report provides the information you require at this time. If you require any additional information or have any questions, please do not hesitate to contact SCS at (707) 546-9461.

Kevin L. Coker REA 7887

CA registration fees paid through 06/30/05

Date

4. AUG, 2008

KNUTTEL

Stephen Knuttel PG 7674

CA registered fees paid through 07/31/07

Date

Former A-1 Rentals - File 01203354.00

Results of the 1st Quarter 2005 Groundwater Monitoring and Sampling Event

Introduction

SCS Engineers (SCS) is pleased to present the results of the 1st Quarter 2005 groundwater monitoring and sampling event conducted at the Former A-1 Rentals site, located at 458 West College Avenue, Santa Rosa, California (Assessors Parcel No. 010-441-011). A summary of historical site investigative activities is presented in previous reports (MP, 1999a, 1999b; PNEG¹ 2001a; SCS, 2003a). The site is located as shown on the Site Location Map, Figure 1. General site features are as shown on the Site Plan, Figure 2.

Groundwater Monitoring

Depth to groundwater measurements were collected from MW-01 through MW-06 on March 14, 2005. Depth to groundwater measurements ranged from approximately 5.5 to 8 feet below ground surface (bgs). The depth to groundwater measurements and well casing elevations were used to calculate groundwater flow direction and gradient. Casing and groundwater elevations are reported in feet relative to mean sea level. Depth to groundwater is expressed in feet. For the 1st Quarter 2005 sampling event, the groundwater flow direction was interpolated to be northerly with a calculated gradient of 0.01 (Figure 2, and Table 1).

Groundwater Sampling

After depth to groundwater measurements were collected, MW-01 through MW-06 were checked for the presence of free product using an oil/water interface probe and by subjective evidence. No free product was reported during this monitoring event. Each well was then purged of approximately three wetted well casing volumes, or at least 5 gallons of groundwater, whichever was greater, using a submersible pump. Temperature, pH, conductivity, turbidity, and dissolved oxygen readings were measured during purging to help demonstrate that fresh groundwater was entering the well casing. Each well was then allowed to recover prior to sampling. The groundwater samples were obtained using a separate disposable bailer for each well and were transferred to the appropriate containers supplied by the laboratory for analysis. The samples were labeled, stored under refrigerated conditions, and transported under Chain-of-Custody documentation to Analytical Sciences (AS) of Petaluma, California for analysis. AS is a California Department of Health Services certified laboratory for the analyses requested. All samples were collected following Standard Soil and Water Sampling Procedures and QA/QC Protocol. Information obtained during sampling was recorded on field sampling forms and Well Purge Records were generated, copies of which are presented in Appendix A. Purge water generated from well sampling activities is stored at the site in 55-gallon UN/DOT-approved drums, pending disposal.

_

¹ Pacific Northwest EnviroNet Group, Inc. (PNEG) became a part of SCS in July 2003.

Laboratory Analysis

The groundwater samples collected from the monitoring wells were analyzed for total petroleum hydrocarbons as gasoline (TPH-g) by EPA Method 5030/8015M, and for volatile organic compounds (VOCS), including the five ether-based oxygenates and lead scavengers, by EPA Method 8260B.

Groundwater Analytical Results

The analytical results for MW-01 through MW-06 for the March 14, 2005 sampling event are presented in Table 2, and contoured on the isoconcentration maps, Figures 3 through 6. Groundwater analytical results to date are summarized in Table 2, and plotted on time versus concentration diagrams, Diagrams A through C. A copy of the laboratory analytical report is presented in Appendix B.

Discussion and Project Update

The information contained herein represents the seventh consecutive sampling event for MW-01 through MW-06. As indicated on the attached Figures 3 through 6, two separate groundwater plumes appear to be present beneath the site; one resulting from the former northern underground storage tanks (USTs) and a separate plume (primarily methyl tertiary butyl ether[MTBE]) resulting from the southern USTs which were recently removed from the site (Figure 2). The groundwater impact concentrated in the general vicinity of MW-05 which extends in a northerly direction towards MW-04 has been documented to be primarily gasoline and other VOCs, including halogenated VOCs (HVOCs). The MTBE-impacted groundwater plume at the south of the property appears to be moving in a northerly direction, down-gradient from the southern USTs (Figure 4).

Based on the groundwater analytical results for the site, the NCRWQCB requested the submittal of a work plan to perform additional plume characterization at the site (NCRWQCB, 2004a). SCS subsequently submitted a work plan (SCS 2004a) and work plan revisions (SCS 2004c, 2004d, and 2004f) which were subsequently approved by the NCRWQCB (NCRWQCB, 2004b). The drilling permit applications were submitted to the SCDHS on February 15, 2005. Drilling of the site was completed in May 2005. A summary report has been prepared and was delivered to the NCRWQCB on July 29, 2005.

Recommendations

SCS recommends continued quarterly monitoring and sampling of the existing groundwater monitoring wells MW-3 through MW-6 and the newly installed wells MW-7 through MW-11. Groundwater samples collected from MW-01, MW-02, and MW-03 have been below the laboratory RDL for all target analytes since August 2003, excluding minor concentrations of toluene detected in

Mr. Jim Tischler August 3, 2005 Page 3

MW-01 and MW-02 during the initial sampling event in August 2003. SCS recommends either discontinuing monitoring and sampling of these wells, or placing them on an annual sampling schedule.

Attachments File No. 01203354.00

Figure 1: Site Location Map

Figure 2: Site Plan - Groundwater Flow Direction and Gradient for 03/14/05

Figure 3: Isoconcentration Map – TPH-g in Groundwater for 03/14/05

Figure 4: Isoconcentration Map – MTBE in Groundwater for 03/14/05

Figure 5: Isoconcentration Map $-\Sigma$ Gasoline Components (Excluding MTBE) in Groundwater

for 03/14/05

Figure 6: Isoconcentration Map – Σ Non-Gasoline Components in Groundwater for 03/14/05

Key to Diagrams and Tables

Diagram A: TPH-g & Groundwater Elevation vs. Time

Diagram B: MTBE & Groundwater Elevation vs. Time

Diagram C: ΣVOCs (Excluding TPH-g, BTEX, and MTBE) & Groundwater Elevation vs. Time

Diagram D: ΣNon Gasoline-Related Compounds & Groundwater Elevation vs. Time

Table 1: Groundwater Flow Direction and Gradient

Table 2: Groundwater Analytical Results

Appendix A

Well Purge Records, dated March 14, 2005

Appendix B

Analytical Sciences report #5031503, dated March 29, 2005

References File No. 01203354.00

Biocca, J., 2001. Telephone conversation between Mr. Biocca and Mr. Gary Johnson of SCS, April

Malcolm Pirnie, Inc. (MP), 1999a. Phase I Environmental Site Assessment/Limited Compliance Assessment, October 1999.

MP, 1999b. Limited Phase II Environmental Site Assessment, December 13.

MRL, 1999. Certification of UST Cleaning and Removal, May 12.

NCRWQCB, 2000. Work Plan Directive, March 13.

NCRWQCB, 2004a, Work Plan Directive, January 5.

NCRWQCB, 2004b. Concurrence with proposed scope of work, September 16.

NCRWQCB, 2005. Personal communication between J. Tischler and K. Coker, February 11.

PNEG, 2000a. Untitled Document, 458 West College Avenue, Santa Rosa, California, January, 24.

PNEG, 2000b. Work Plan for Soil and Groundwater Investigation at A-1 Rentals, 458 West College Avenue, Santa Rosa, California, May 11.

PNEG, 2001a. Report on Soil and Groundwater Investigation at A-1 Rentals, 458 West College Avenue, Santa Rosa, California, April, 11.

Former A-1 Rentals - File 01203354.00

Results of the 1st Quarter 2005 Groundwater Monitoring and Sampling Event

- PNEG, 2001b. Work Plan for Additional Soil and Groundwater Investigation at A-1 Rentals, 458 West College Avenue, Santa Rosa, California, August, 29.
- PNEG, 2001c. Revised Work Plan for Additional Soil and Groundwater Investigation at A-1 Rentals, 458 West College Avenue, Santa Rosa, California, November, 19.
- SCS, 2003a. Results of Additional Soil and Groundwater Investigation at Nations Rents, 458 West College Avenue, Santa Rosa, California, November 13.
- SCS, 2003b. Results of the 4th Quarter 2003 Groundwater Monitoring and Sampling Event at Nations Rents, 458 West College Avenue, Santa Rosa, California, December 24.
- SCS, 2004a. Work Plan for Additional Subsurface Investigation, Nations Rents, 458 West College Avenue, Santa Rosa, California, February 26.
- SCS, 2004b. Results of the 1st Quarter 2004 Groundwater Monitoring and Sampling Event at Nations Rents, 458 West College Avenue, Santa Rosa, California, April 1.
- SCS, 2004c. Response to NCRWQCB verbal comments regarding modifications of the May 3, 2004 Work Plan for Additional Subsurface Investigation, Nations Rent Site, 458 West College Avenue, Santa Rosa, California, May 12.
- SCS, 2004d. Response to NCRWQCB verbal comments regarding modifications of the May 3, 2004 Work Plan for Additional Subsurface Investigation, Nations Rent Site, 458 West College Avenue, Santa Rosa, California, June 21.
- SCS, 2004e. Results of the 2nd Quarter 2004 Groundwater Monitoring and Sampling Event at Nations Rents, 458 West College Avenue, Santa Rosa, California, September 1.
- SCS, 2004f. Work Plan Addendum, Nations Rents, 458 West College Avenue, Santa Rosa, California, September 21.
- SCS, 2004g. Results of the 3rd Quarter 2004 Groundwater Monitoring and Sampling Event at Nations Rents, 458 West College Avenue, Santa Rosa, California, November 16.
- SCS, 2005. Results of the 4th Quarter 2004 Groundwater Monitoring and Sampling Event at Nations Rents, 458 West College Avenue, Santa Rosa, California, March 22.
- SRFD, 1986. UST removal permit applications for one 350-gallon 2-cycle fuel UST, one 1,000-gallon diesel UST, one 1,000-gallon gasoline UST.
- SRFD, 1993. Confirmation of removal of 6,000-gallon gasoline UST in 1986.
- Wheeler, A., 2001. Telephone conversation between Mr. Anthony Wheeler and Gary Johnson of SCS, December 27.

Mr. Jim Tischler August 3, 2005 Page 5

Distribution List File No. 01203354.00

Mr. Jim Biocca 9820 Brooks Road South Windsor, California 95492

Mr. David Phillips and Mrs. Dale Phillips 121 Mary-Paige Lane Santa Rosa, California 95404

Mr. Michael Miller Perry, Johnson, Anderson, Miller & Moskowitz 703 2nd Street, 4th Floor Santa Rosa, California 95404

SCS ENG	INEE	ERS	SITE LOCATION MAP	APPROX. SCALE
3645 WESTWIND BOULEVARD SANTA ROSA, CA 95403 PH. (707) 546–9461 FAX (707) 5	544–5769		FORMER A-1 RENTALS	0 FT 900 FT FIGURE
PROJ. NO: 01203354.00	TAKEN BY:	FILE: _SiteLocMap	458 WEST COLLEGE AVE. SANTA ROSA, CA	1
11/13/03	CREATED BY	APP. BY:		•

	GROUNDWATER FLOW LEGEND Estimated Groundwater Gradient Contour Identifier Date Est. Flow Gradient													
	ed Groundwo Direction		t Contour ul = 1.0 ft)	ldentifier Tag	Date	Est. Flow Direction	Gradient Slope	→ MW−1 Monitoring Well Location [XX.XX] Groundwater Elevation						
ldentifier Tag	Date	Est. Flow	Gradient Slope											
A	8/28/03	Direction Northerly	i = 0.01					NOTE: Ground water elevations are in feet above mean sea level (National						
B	12/8/03	Northeasterly	i = 0.01					Geodetic Vertical Datum, 1929).						
0	3/9/04	Northeasterly	i = 0.02					.						
0	6/23/04	Northerly	i = 0.01					Cone Penetrometer TestBoring (CPT) Location						
E	9/13/04	Northwesterly	i = 0.01											
F	1/6/05	NNE	i = 0.01											
<u> </u>	3/14/05	Northerly	i = 0.01											
	.													
SCSENGINEERS SHEET TITLE: SITE PLAN CPOINDWATER FLOW DIRECTION AND CRADIENT FOR 3/14/05														
ENVIRONMENTAL CONSULTANTS 3645 WESTWIND BOULEVARD SANTA ROSA, CALFORNIA 95403 FROJECT TITLE: FORMER A-1 RENTALS FIGURE														
	546-9461 F	5403 AX. (707) 544-5769 AJH ACAD FILE: 3354.00)_CW C_3442	-			A-I RENTALS DLLEGE AVENU							
	23/05 CHK. BY:	APP. BY: SK	, JII.U-J772			SANTA ROS	SA, CALIFORN	1A 2 0F 2						

College Avenue ŢĸŢĸŢĸŢĸŢĸŢĠrass StripĸŢĸŢĸŢĸ Grass Strip ********** Entrance Sidewalk Sidewalk **LEGEND** ONE FORMER 1,000 GALLON GAS UST, REMOVED BY GENE FISH; 1986. ONE FORMER 1,000 GALLON DIESEL UST, REMOVED BY GENE FISH; 1986. MW-04 [3.3] CPT-01A ONE FORMER 1,0000 GALLON GAS UST, REMOVED BY JÍM BIOCCA; 1999. **APPROXIMATE** LOCATION OF ONE FORMER 350 GALLON 2 CYCLE FUEL 4 FORMER UST UST, REMOVED BY GENE FISH; 1986. Wash Bay (REMOVED IN ONE FORMER 6,000 GALLON GAS UST, REMOVED BY GENE FISH; 1986. 1986) Cleaning ONE FORMER 350 GALLON WASTE/OIL UST, REMOVED BY JIM BIOCCA; 1999. Unit 6 **APPROXIMATE** ONE FORMER 10,000 GALLON GAS UST, LOCATION OF 7 REMOVED BY NATIONS RENTS; 2004. FORMER USTs ONE FORMER 10,000 GALLON DIESEL UST, (REMOVED IN REMOVED BY NATIONS RENTS; 2004. 1986, 1999)⁻ [<1.0] Off MW - 03APPROXIMATE TANK LOCATIONS BASED ON HISTORICAL DATA; PHASE ONE ENVIRONMENTAL SITE ASSESSMENT, MALOCUM PIRNIE, INC 10/1999. LIMITED PHASE TWO ENVIRONMENTAL SITE [<1.0] ASSESSMENT, MALCOLM PIRNIE, INC 12/1999 MONITORING WELL LOCATION Shop Shop Sales CONE PENETROMETER TEST BORING (CPT) LOCATION Isoconcentration Line Σ of non-gasoline components - MW-06 ug/L (1.0] CPT-04 APPROXIMATE LOCATION OF MW - 02FORMER USTs [<1.0] (REMOVED IN 1986, 1999, 2004) 0 8 CPT-02 ⊕ .N. MW - 01[<1.0] APPROXIMATE SCALE IN FEET 40 40 SHEET TITLE: ISOCONCENTRATION MAP -SCALE: SCSENGIN Σ NON-GASOLINE COMPONENTS IN GROUNDWATER FOR 03/14/05 ENVIRONMENTAL CONSULTANTS 1" = 40'PROJECT TITLE: 3645 WESTWIND BOULEVARD SANTA ROSA, CALIFORNIA 94503 PH. (707) 946-5461 FAX. (707) 544-5769 FORMER A1 RENTALS FIGURE NO. 458 W. COLLEGE AVENUE DWN. BY: AJH CHK. BY: 3354.00-IS04-(rev)333 3354.00 6 SANTA ROSA, CALIFORNIA 5/9/05

Key to Diagrams and Tables 458 West College Avenue, Santa Rosa

TPH-g = Total petroleum hydrocarbons in the gasoline range

TPH-d = Total petroleum hydrocarbons in the diesel range

B = Benzene

T = Toluene

E = Ethylbenzene

X = Xylenes

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tert-butyl ether

TAME = Tert amyl-methyl ether

TBA = Tert-butyl alcohol

5-Oxys = 5 oxygenated fuel compounds (MTBE, DIPE, ETBE, TAME, TBA)

VOCs = Volatile organic compounds

HVOCs = Halogenated volatile organic compounds

 μ g/L = Micrograms per liter

ND = Non detect

NA = Not analyzed

EDC = $Ethylene dichloride^2$

EDB = Ethylene dibromide 3

Pb Scavs = Lead scavengers

² EDC has been referred to as 1,2-dichloroethane (1,2-DCA) in previous reports.

³ EDB has been referred to as 1,2-dibromoethane in previous reports.

Note: MW-01 through MW-03 and MW-06 have been non-detect for TPH-g since installation in August 2003.

SCS ENGIN	IEERS	TPH-g & GROUNDWATER ELEVATION vs TIME	DIAGRAM
3645 WESTWIND BO	DULEVARD	Former A-1 Rentals	
SANTA ROSA, CALII	FORNIA	458 West College Avenue	A
PH: (707) 546-9461 F	X: (707)544-5769	Santa Rosa, California	
Drawn By: KLC	File Name: TPH-GW	Job Number: 01203354.00	DATE: 04/06/05

Note: MW-01, MW-02, and MW-03 have been non-detecct for MTBE since installation in August 2003.

SCS ENGIN	EERS	MTBE & Groundwater Elevation vs Time	DIAGRAM
3645 WESTWIND BOU	JLEVARD	Former A-1 Rentals	
SANTA ROSA, CALIF	ORNIA	458 West College Avenue	В
PH: (707) 546-9461 FX:	: (707)544-5769	Santa Rosa, California	
Drawn By: KLC	File Name: MTBE-GW	Job Number: 01203354.00	DATE: 04/06/05

Note: Gaoline-related compounds only. MW-01 through MW-03 and MW-06 have been non-detect since installation in August 2003.

SCS ENGINEE	RS	ΣVOCs (Excluding TPH-g, BTEX and MTBE) & Groundwater Elevation vs Time	DIAGRAM
3645 WESTWIND BOULEV	VARD	Former A-1 Rentals	
SANTA ROSA, CALIFORN	IIA	458 West College Avenue	\mathbf{C}
PH: (707) 546-9461 FX: (707	7)544-5769	Santa Rosa, California	
Drawn By: KLC File	Name: VOCs-GW	Job Number: 01203354.00	DATE: 04/06/05

Note: MW-01 through MW-03 and MW-06 have been non-detect since installation in August 2003.

SCS ENGIN	EERS	Σ Non Gasoline-Related Compounds & Groundwater Elevation vs Time	DIAGRAM
3645 WESTWIND BOU	JLEVARD	Former A-1 Rentals	
SANTA ROSA, CALIF	ORNIA	458 West College Avenue	D
PH: (707) 546-9461 FX:	: (707)544-5769	Santa Rosa, California	
Drawn By: KLC	File Name: VOCs-GW	Job Number: 01203354.00	DATE: 04/06/05

Table 1: Groundwater Flow Direction and Gradient 458 West College Avenue, Santa Rosa

Well #	Date	Top of Casing Elevation (ft. > msl)	Depth to Groundwater (ft.)	Water Level Elevation (ft. > msl)	Groundwater Flow Direction & Gradient (i)	
MW-01		135.93	6.33	129.60		
MW-02	•	136.19	7.35	128.84		
MW-03	08/28/03*	135.62	8.92	126.70	Northerly	
MW-04	08/28/03	135.10	8.65	126.45	i = 0.01	
MW-05		135.23	7.10	128.13		
MW-06		135.37	7.14	128.23		
MW-01		135.93	7.19	128.74		
MW-02		136.19	7.18	129.01		
MW-03	12/08/03	135.62	6.05	129.57	Northwesterly	
MW-04	12/06/03	135.10	7.85	127.25	i = 0.01	
MW-05		135.23	6.61	128.62		
MW-06		135.37	6.97	128.40		
MW-01		135.93	5.70	130.23		
MW-02	•	136.19	6.54	129.65		
MW-03	02/00/04	135.62	6.41	129.21	Northeasterly	
MW-04	03/09/04	135.10	7.78	127.32	i = 0.02	
MW-05		135.23	6.06	129.17		
MW-06	•	135.37	5.39	129.98		
MW-01		135.93	8.52	127.41		
MW-02		136.19	9.70	126.49	1	
MW-03	06/22/04	135.62	10.10	125.52	Northerly	
MW-04	06/23/04	135.10	9.58	125.52	i = 0.01	
MW-05	•	135.23	8.92	126.31		
MW-06		135.37	9.05	126.32		
MW-01		135.93	9.47	126.46		
MW-02	•	136.19	10.51	125.68		
MW-03	00/12/04	135.62	11.11	124.51	Northwesterly	
MW-04	09/13/04	135.10	9.50	125.60	i = 0.01	
MW-05	•	135.23	9.51	125.72		
MW-06		135.37	9.81	125.56		
MW-01		135.93	4.62	131.31		
MW-02		136.19	5.19	131.00	1	
MW-03	01/07/07	135.62	4.92	130.70	Northerly	
MW-04	01/06/05	135.10	6.72	128.38	i = 0.01	
MW-05		135.23	4.79	130.44	1	
MW-06		135.37	4.40	130.97	1	
MW-01		135.93	5.55	130.38		
MW-02	•	136.19	6.54	129.65	1	
MW-03	02/14/05	135.62	6.73	128.89	Northerly	
MW-04	03/14/05	135.10	7.91	127.19	i = 0.01	
MW-05		135.23	6.02	129.21	1	
MW-06	•	135.37	5.53	129.84	1	

^{*} Surveyed to msl on September 2, 2003 under the direction of a licensed land surveyor.

Table 2: Groundwater Analytical Results 458 West College Avenue, Santa Rosa

									Gasol	ine Co	mpon	ents						N	lon-Ga	asoline	soline Components		
ID	Date	TPH-g	TPH-d	Benzene	Toluene	Ethylbenzene	Xylenes	1,2-dichloroethane	Methyl tert butyl ether	sec-butylbenzene	isopropylbenzene	naphthalene	n-butylbenzene	n-propylbenzene	1,2,4-trimethylbenzene	1,3,5-trimethylbenzene	tert-butylbenzene	p-isopropyltoluene	chlorobenzene	1, 4-dichlorobenzene	1,2-dichlorobenzene	1, 3 dichlorobenzene	1,2,4 trichlorobenzene
												μg/I											
	08/28/03	< 50	< 50	<1.0	1.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	12/08/03	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	03/09/04	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-01	06/23/04	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	09/13/04	< 50	NA	< 0.5	< 0.5	< 0.5	<1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	01/06/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	03/14/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	08/28/03	< 50	< 50	<1.0	1.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	12/08/03	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	03/09/04	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-02	06/23/04	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	09/13/04	< 50	NA	< 0.5	< 0.5	< 0.5	<1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	01/06/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	03/14/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	08/28/03	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	12/08/03	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	03/09/04	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-03	06/23/04	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	09/13/04	< 50	NA	< 0.5	< 0.5	< 0.5	<1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	01/06/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	03/14/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Note: All samples to date have been ND for analytes not listed in Table 2.

Table 2: Groundwater Analytical Results 458 West College Avenue, Santa Rosa

									Gasol	ine Co	mpon	ents						N	lon-G	asoline	e Com	ponent	ts
ID	Date	TPH-g	LPH-d	Benzene	Toluene	Ethylbenzene	Xylenes	1,2-dichloroethane	Methyl tert butyl ether	sec-butylbenzene	isopropylbenzene	naphthalene	n-butylbenzene	n-propylbenzene	1,2,4-trimethylbenzene	1,3,5-trimethylbenzene	tert-butylbenzene	p-isopropyltoluene	chlorobenzene	1, 4-dichlorobenzene	1,2-dichlorobenzene	1, 3 dichlorobenzene	1,2,4 trichlorobenzene
												μg/I											
	08/28/03	300	150*	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.9	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.8	<1.0	1.6	<1.0	<1.0	<1.0	<1.0
	12/08/03	270	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.0	<1.0	3.5	<1.0	<1.0	<1.0	<1.0
	03/09/04	180	100*	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.7	<1.0	1.0	<1.0	<1.0	<1.0	<1.0
MW-04	06/23/04	220	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	1.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.3	<1.0	12	<1.0	1.0	<1.0	<1.0
	09/13/04	< 50	NA	< 0.5	< 0.5	< 0.5	<1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.1	<1.0	<1.0	<1.0	<1.0
	01/06/05	93	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	03/14/05	440	NA	<1.0	<1.0	<1.0	<1.0	<1.0	1.3	3.3	<1.0	<1.0	1.6	<1.0	<1.0	<1.0	3.1	<1.0	3.3	<1.0	<1.0	<1.0	<1.0
	08/28/03	830	260*	4.1	1.4	9.1	21.3	<1.0	6.6	3.0	4.7	2.8	<1.0	8.4	13	3.7	2.4	<1.0	1.0	18	78	5.3	2.2
	12/08/03	2,400	460*	< 5.0	< 5.0	96	96	< 5.0	< 5.0	11	48	25	11	120	75	17	8.1	<1.0	< 5.0	< 5.0	5.2	< 5.0	< 5.0
	03/09/04	900	220*	1.0	<1.0	47	26.3	<1.0	<1.0	5.7	18	16	45	<1.0	35	3.1	4.2	<1.0	1.2	1.2	3.7	<1.0	<1.0
MW-05	06/23/04	1,200	180*	18	<1.0	37	22	<1.0	<1.0	2.0	12	5.7	18	<1.0	8.9	1.3	2.6	<1.0	11	14	65	4.0	<1.0
	09/13/04	630	NA	15	< 0.5	7.0	1.8	<1.0	2.3	1.1	5.5	<1.0	9.0	<1.0	3.0	<1.0	3.4	<1.0	37	22	74	6.7	<1.0
	01/06/05	3,100	NA	2.4	<1.0	210	34.6	<1.0	2.4	13	66	330	160	<1.0	17	11	11	1.0	7.2	1.9	7.1	<1.0	<1.0
	03/14/05	830	NA	<1.0	<1.0	23	18.6	<1.0	<1.0	2.9	9.8	3.3	2.6	22	30	2.9	2.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	08/28/03	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	5.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	12/08/03	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	12	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	03/09/04	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	28	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-06	06/23/04	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	8.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	09/13/04	< 50	NA	< 0.5	< 0.5	< 0.5	<1.5	<1.0	8.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	01/06/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	03/14/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	26	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Note: All samples to date have been ND for analytes not listed in Table 2.

^{*} The sample chromatogram does not exhibit a characteristic pattern of diesel. Higher boiling points of weathered gasoline are present.

APPENDIX A

Well Purge Records, dated March 14, 2005

1	S E N	IGIN	NEEF	R S		20	PURGE 005 - 1st Qu	ıarter	RD		WELL NUMBER MW-01
PROJECT		Former A	-1 Rentals	,		JOB NUMBE	R 6 354.00	SITE	W. College		RECORDED BY Amy Yardley
						PURGING CI			_		s (or 5 gallons minimum
HAND PUI SUBMERS BAILER OTHER	MP SIBLE PUMP	MET	GING 'HOD X	SAMPLIN METHOL		for 2" dia (±10%), o REMARKS * Oil/wat	. wells), unt or until dry.	til water pa	rameters (pH, temp., c	cond.) have stabilized MLE = Meter Limit
CASING	DIAMETER	(D _c): 2.0)			DATE OF	SAMPLING:			3	3/14/2005
DEPTH 1		(=0)	_	\rightarrow D _C	GROUND (7)	WEATHE					Sunny
WATE		5.5	5 🕌	<u> </u>	SURFACE (S)		WATER LEV	/FLS FROM	TOC:	5	.55 / 5.55
NAPL:		n.a	* -0.51				WELL DEPT				19.84
NAPL TH	IICKNESS:	n.a								6	
SCREEN	DEPTH:			h	H		OLUME (3 C				8 gallons
TOP:		5.0)	1	TD_{c}		O WATER FO	OR 80% REC	HARGE:	8.34 f	t. below TOC
вотто	OM:	20.	0 -	▼ ▼	. _▼		SAMPLING:				12:10
TOTAL D	EPTH (TD _o	:): 20.0	00		SCREEN		O WATER A		AMPLIN <u>G:</u>		t. below TOC
	n (inches) : De				INTERVAL	APPEARA	ANCE OF SAI	MPLE:		Slig	htly cloudy
ONE CASI	NG VOLUME	:			: - 	LABORA	TORY:			Analy	tical Sciences
	3.14 (D _C / 2) ²]		2.27 gallor			SEE CHA	IN OF CUST	ODY FORM I	OR ANALY	TICAL INFOR	RMATION.
	PURGIN	G DATA			JLATIVE REMOVED		WATER	CHARACTE	ERISTICS		COMMENTS
DATE	BEGIN	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	pН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
3/14/05	11:45	11:46	2	2	0.88	6.79	0.990	*MLE	19.0	2.76	
3/14/05	11:46	11:47	2	4	1.76	6.68	0.847	184	18.6	2.41	
3/14/05	11:47	11:49	3	7	3.08	6.67	0.850	10	18.4	2.65	

	S E N	IGIN	NEEF	R S		20	PURGE 005 - 1st Qu	arter	RD		WELL NUMBER MW-02
PROJECT		Former A	-1 Rentals	.		JOB NUMBER 01203	354.00	SITE 485 \	W. College		RECORDED BY Amy Yardley
HAND PUN SUBMERS BAILER OTHER	/IP IBLE PUMP		GING CHOD	SAMPLING METHOD		(±10%), o	. wells), unt or until dry.	il water pa	rameters (_]	sing volume pH, temp., c	s (or 5 gallons minimur cond.) have stabilized
	O:	(D _c):6.5			GROUND (S)	WEATHE	SAMPLING: R: WATER LEV	'ELS FROM	 TOC:		/14/2005 Sunny .55 / 6.54
SCREEN TOP: BOTTC			-0.25 .*	h	H TD _C	PURGE V DEPTH T TIME OF	WELL DEPT OLUME (3 C O WATER FO SAMPLING: O WATER A ANCE OF SAI	ASING VOLU OR 80% REC	JMES):	9.18 f	20.21 5 gallons t. below TOC 14:40 t. below TOC Clear
ONE CASI	NG VOLUME .14 (D _c / 2) ²]	: [7.48 gal/ft³]:	2.16 gallor		JLATIVE	SEE CHA	IN OF CUST			Analy	
DATE -	PURGIN	G DATA ME FINISH	WATER REMOVED (GAL)		CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	COMMENTS
3/14/05	14:07	14:08	2	2	0.93	6.95	0.414	870	18.7	3.39	
3/14/05	14:08	14:10	2	4	1.86	6.82	0.454	277	17.6	4.01	
3/14/05	14:10	14:12	3	7	3.25	6.78	0.452	23	17.6	3.66	

	S E N	IGII	NEEF	RS		20	PURGE 005 - 1st Qu	arter	RD		WELL NUMBER MW-03		
PROJECT		Former A	-1 Rentals	;		JOB NUMBE. 01203	R 3 354.00	SITE 485 V	W. College		RECORDED BY Amy Yardley		
HAND PUN SUBMERS BAILER	MP IBLE PUMP	<i>MET</i>	GING CHOD	SAMPLING METHOL		(±10%), (RITERIA Min. wells), unto or until dry.	il water pa	rameters (pH, temp., o	lumes (or 5 gallons minin np., cond.) have stabilized PLs.		
OTHER													
		(D _c):2.0	<u> </u>	\rightarrow D_{c}			SAMPLING:			3	3/14/2005		
DEPTH T WATER		6.7	3	<u> </u>	GROUND SURFACE (S)	WEATHE		/ELC EDOM			Sunny		
NAPL:	. ,	n.a	* -0.20				WATER LEV			0	.74 / 6.73 20.11		
NAPL THI	ICKNESS:	n.a			} !		OLUME (3 C			6	4 gallons		
SCREEN	DEPTH:			h X	H		O WATER FO		′ —		t. below TOC		
TOP:		5.0)]_	TDc		SAMPLING:	OIX 00 70 IXEX	DITAROL.	9.04	14:26		
BOTTO	DM:	20.	.0	<u> </u>	-▼		O WATER A	T TIME OF S	AMPI ING:	ନ ସହ :	t. below TOC		
TOTAL D	EPTH (TD _c	:):20.0	00		SCREEN INTERVAL		ANCE OF SAI		, avii LiiN <u>G.</u>	0.56	Clear		
Diameters in	(inches) : De	epths in (feet)			INTERVAL	LABORA		VII LL.		Δnaly	tical Sciences		
	NG VOLUME .14 (D _c / 2) ²]		2.13 gallo	ns_			IN OF CUSTO	ODY FORM I	FOR ANALY				
	PURGIN	G DATA			ILATIVE REMOVED		WATER	CHARACTE	ERISTICS		COMMENTS		
DATE -	TIN	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)			
3/14/05	13:53	13:55	2	2	0.94	6.73	0.526	172	18.8	3.08			
3/14/05	13:55	13:56	2	4	1.88	6.70	0.548	10	18.4	3.34			
3/14/05	13:56	13:59	3	7	3.28	6.83	0.584	10	18.1	2.62			
						1							
						l							

	SEN	G 1	NEEF	R S		20	PURGE 005 - 1st Qu	ıarter	RD		WELL NUMBER MW-04
PROJECT		Former A	-1 Rentals	3		JOB NUMBER 01203	R 6354.00	SITE 485 \	V. College		RECORDED BY Amy Yardley
HAND PUI SUBMERS BAILER	MP SIBLE PUMP		GING CHOD	SAMPLIN METHOL		(±10%), o	. wells), unt or until dry.	til water pa	rameters (J	pH, temp., o	s (or 5 gallons minimum cond.) have stabilized MLE = Meter Limit
OTHER					_						
DEPTH 1 WATE NAPL:	R (h):	(D _c): 2.0 7.9 n.a n.a	1 <u>*</u> -0.37	D _C	GROUND SURFACE (S)	WEATHE TAGGED TAGGED	WATER LEV	H FROM TO	C:	7	Sunny .91 / 7.91 20.02
SCREEN TOP:	DEPTH:	5.0)	h L	H TD _c	DEPTH T	OLUME (3 C. O WATER FO SAMPLING:	OR 80% REC	CHARGE:	10.25	7 gallons ft. below TOC 12:58
Diameters i	DEPTH (TD _c n (inches) : De NG VOLUME $3.14 (D_c / 2)^2$]	epths in (feet)		ns	SCREEN INTERVAL	DEPTH TO WATER AT TIME OF SAMPLING APPEARANCE OF SAMPLE: LABORATORY: SEE CHAIN OF CUSTODY FORM FOR ANAL			_	Very cloudy Analytical Sciences	
	PURGIN	G DATA			JLATIVE REMOVED		WATER	CHARACTE	RISTICS		COMMENTS
DATE	TIN	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	pН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
3/14/05	12:23	12:25	2	2	1.05	7.12	0.409	*MLE	18.2	3.69	
3/14/05	12:25 12:27	12:27	2	6	2.09	6.87	0.386	860 379	18.2	2.81	
3/14/05	12.27	12:28			3.14	6.82	0.371		18.3	2.38	
24/200:											
Date: 3,											
Report Form: WELL PURGE RECORD 2 Project ID: 01203354,00, GPJ Date: 3/24/2005											
roject I											
D2 P											
ECOR											
SE R											
T bolt											
ı: WEI											
rt Forn											
Repo											

	S E N	I G I I	NEEF	R S		20	PURGE 005 - 1st Qu	ıarter	RD		WELL NUMBER MW-05
PROJECT		Former A	-1 Rentals	;		JOB NUMBE. 01203	354.00	SITE 485 \	W. College		RECORDED BY Amy Yardley
HAND PUN SUBMERS BAILER OTHER	MP SIBLE PUMP		GING 'HOD	SAMPLING METHOD		(±10%), (. wells), unt or until dry.	til water pa	rameters ()	sing volume pH, temp., c	s (or 5 gallons minimu cond.) have stabilized
CASING I DEPTH T WATEI NAPL:	R (h):	(D _c): 2.0 6.0 n.a n.a	2 * -0.53	D _C	GROUND (S) SURFACE (S) H TD _C	WEATHE TAGGED TAGGED PURGE V DEPTH T	WATER LEV WELL DEPT OLUME (3 C. O WATER FO	TH FROM TO	JMES):	6.	5/14/2005 Sunny .03 / 6.02 20.14 6 gallons it. below TOC
Diameters in	DEPTH (TD _d n (inches) : De	epths in (feet)			SCREEN INTERVAL	TIME OF SAMPLING: 13 DEPTH TO WATER AT TIME OF SAMPLING: 7.36 ft. b APPEARANCE OF SAMPLE: CI			ti. below TOC Clear tical Sciences		
DATE	PURGIN	G DATA ME FINISH	WATER REMOVED (GAL)		CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	COMMENTS
3/14/05	12:39	12:40	2	2	0.91	7.08	0.223	10	15.9	2.79	
3/14/05	12:40	12:42	2	4	1.82	6.80	0.231	10	14.5	3.56	
3/14/05	12:42	12:44	3	7	3.19	6.74	0.225	10	14.3	3.40	
Applit of II. Well-round											

_	S E N	G 1	NEEF	8 S		20	PURGE 005 - 1st Qu	ıarter	RD		WELL NUMBER MW-06
PROJECT		Former A	-1 Rentals	i		JOB NUMBE. 01203	R 354.00	SITE 485 V	W. College		RECORDED BY Amy Yardley
HAND PUI SUBMERS BAILER OTHER	MP SIBLE PUMP		GING 'HOD	SAMPLING METHOL		(±10%), (. wells), unt or until dry.	il water pa	rameters ()	sing volume pH, temp., c	s (or 5 gallons m inimu cond.) have stabilized
CASING DEPTH 1 WATE NAPL:		(D _c): 2.0	3 .* -0.61		GROUND (S)	WEATHE TAGGED TAGGED	WATER LEV	H FROM TO	OC:	5	/14/2005 Sunny .51 / 5.53 20.03
SCREEN TOP: BOTTO TOTAL Diameters i	DEPTH:	5.0 20. 20.0 epths in (feet)	0 .	h V	H TD _C	DEPTH T TIME OF DEPTH T APPEARA LABORA		OR 80% REC T TIME OF S MPLE:	CHARGE: AMPLING:	8.30 f 7.06 f	8 gallons t. below TOC 12:02 t. below TOC Clear tical Sciences
DATE	PURGIN TII	IG DATA ME FINISH	WATER REMOVED (GAL)		CASING VOLUMES	рН	WATER CONDUC- TIVITY (mmhos/cm)	CHARACTE TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	COMMENTS
3/14/05	11:30	11:32	2	2	0.88	6.56	0.711	481	19.1	2.56	
3/14/05	11:32	11:33	2	4	1.77	6.46	0.711	10	18.8	3.50	
3/14/05	11:33	11:36	3	7	3.09	6.45	0.707	10	18.8	2.69	
,											
					1						<u> </u>

APPENDIX B

Analytical Sciences report #5031503, dated March 29, 2005

Report Date: March 29, 2005

Stephen Knuttel SCS Engineers 3645 Westwind Blvd. Santa Rosa, CA 95403

LABORATORY REPORT

Project Name: Nations Rent

Lab Project Number: 5031503

This 18 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D.

Laboratory Director

TPH Gasoline in Water

Lab # 28837	Sample ID MW-01	Analy TPH/Gase		Result (ug/L) ND	RDL (ug/L) 50
Date Sampled: Date Received:	03/14/05 03/15/05	Date Analyzed: Method:	03/17/05 EPA 5030/8015M		eatch #:5391

Lab # 28838	Sample ID MW-02	Analy TPH/Gase		Result (ug/L) ND	RDL (ug/L) 50
Date Sampled: Date Received:	03/14/05 03/15/05	,	03/17/05 EPA 5030/8015M		Batch #: 5391

Lab # 28839	Sample ID MW-03	Analy TPH/Gase		Result (ug/L) ND	RDL (ug/L) 50
Date Sampled: Date Received:		Date Analyzed: Method:	03/17/05 EPA 5030/8015M		atch #:5391

Lab Project #: 5031503

Lab #	Sample ID	Analy	/sis	Result (ug/L)	RDL (ug/L)
28840	MW-04	TPH/Gase	oline	440	50
Date Sampled:	03/14/05	Date Analyzed:	03/17/05	QC E	Batch #: 5391
Date Received:	03/15/05	Method:	EPA 5030/8015M		

Lab # 28841	Sample ID MW-05	Analy TPH/Gase		Result (ug/L) 830	RDL (ug/L) 100
Date Sampled: Date Received:	03/14/05 03/15/05	Date Analyzed: Method:	03/18/05 EPA 5030/8015M		Batch #:5391

Lab # 28842	Sample ID MW-06	Analy TPH/Gase		Result (ug/L) ND	RDL (ug/L) 50
Date Sampled: Date Received:	03/14/05 03/15/05	Date Analyzed: Method:	03/17/05 EPA 5030/8015M		atch #: <u>5391</u>

Lab Project #: 5031503

Volatile Hydrocarbons by GC/MS in Water

Lab #	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
28837	MW-01	dichlorodifluoromethane	ND	1.0
	-	chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)	
28837	MW-01	isopropyl benzene		ND	1.0	
		1,2,3-trichloropropa	ne	ND	1.0	
		bromobenzene		ND	1.0	
		n-propyl benzene		ND	1.0	
		2-chlorotoluene		ND	1.0	
		4-chlorotoluene		ND	1.0	
		1,3,5-trimethylbenze	ene	ND	1.0	
		tert-butylbenzene		ND	1.0	
		1,2,4-trimethylbenze	ene	ND	1.0	
		sec-butylbenzene		ND	1.0	
		1,3-dichlorobenzene)	ND	1.0	
		1,4-dichlorobenzene)	ND	1.0	
		1,2-dichlorobenzene)	ND	1.0	
		p-isopropyltoluene		ND	1.0	
		n-butylbenzene	ND	1.0		
		1,2,4-trichlorobenze	ne	ND	1.0	
		naphthalene		ND	1.0	
		hexachlorobutadien	е	ND	1.0	
		1,2,3-trichlorobenze	ne	ND	1.0	
		Oxygenated Gas	Oxygenated Gasoline Additives			
		tert-butyl alcohol (TE	BA)	ND	25	
		methyl tert-butyl eth	•	ND	1.0	
		di-isopropyl ether (D	OIPE)	ND	1.0	
		ethyl tert-butyl ether	r (ETBE)	ND	1.0	
		tert-amyl methyl eth	er (TAME)	ND	1.0	
Sı	urrogates	Result (ug/L)	% Recovery	Acceptance F	Range (%)	
toluene-d ₈	oromethane (20) (20) Jorobenzene (20)	21.8 19.7 19.9	109 98.5 99.5	70 – 130 70 – 130 70 – 130		
Date Samp Date Recei		Date Analyzed: 03/1 Method: EPA	5/05 8260B	QC Batch #: _	5386	

Lab#	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
28838	MW-02	dichlorodifluoromethane	ND	1.0
	02	chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
28838	MW-02	isopropyl benzene		ND	1.0
		1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		ND	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ene	ND	1.0
		tert-butylbenzene		ND	1.0
		1,2,4-trimethylbenze	ene	ND	1.0
		sec-butylbenzene		ND	1.0
		1,3-dichlorobenzene)	ND	1.0
		1,4-dichlorobenzene)	ND	1.0
		1,2-dichlorobenzene	ND	1.0	
		p-isopropyltoluene	ND	1.0	
		n-butylbenzene 1,2,4-trichlorobenzene naphthalene		ND	1.0
				ND	1.0
				ND	1.0
		hexachlorobutadien	е	ND	1.0
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gas	oline Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth	-	ND	1.0
		di-isopropyl ether (D		ND	1.0
		ethyl tert-butyl ether	-	ND	1.0
		tert-amyl methyl eth	•	ND	1.0
Su	rrogates	Result (ug/L) % Recovery		Acceptance F	Range (%)
dibromoflu	oromethane (20)	21.9 110 70-		70 – 1	30
toluene-d ₈	(20)	19.7	98.5	70 – 1	30
4-bromoflu	orobenzene (20)	20.1	101	70 – 1	30
Date Samp		Date Analyzed: 03/1 Method: EPA	5/05 8260B	QC Batch #: _ !	5386

Lab #	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
28839	MW-03	dichlorodifluoromethane	ND	1.0
		chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
28839	MW-03	isopropyl benzene		ND	1.0
		1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		ND	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ne	ND	1.0
		tert-butylbenzene		ND	1.0
		1,2,4-trimethylbenze	ne	ND	1.0
		sec-butylbenzene		ND	1.0
		1,3-dichlorobenzene	•	ND	1.0
		1,4-dichlorobenzene	•		
		1,2-dichlorobenzene		ND	1.0
		p-isopropyltoluene		ND	1.0
		n-butylbenzene 1,2,4-trichlorobenzene		ND	1.0
				ND	1.0
		naphthalene		ND	1.0
		hexachlorobutadien	е	ND	1.0
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gase	oline Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth		ND	1.0
		di-isopropyl ether (D		ND	1.0
		ethyl tert-butyl ether		ND	1.0
		tert-amyl methyl eth	•	ND	1.0
Surro	gates	Result (ug/L) % Recovery		Acceptance F	Range (%)
dibromofluoro toluene-d ₈ (20 4-bromofluoro))	21.3 107 18.9 94.5 19.7 98.5		70 – 1 70 – 1 70 – 1	30
Date Sampled: Date Received:		Date Analyzed: 03/1 Method: EPA	5/05 8260B	QC Batch #:	5386

Lab#	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
28840	MW-04	dichlorodifluoromethane	ND	1.0
		chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	3.3	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
28840	MW-04	isopropyl benzene		ND	1.0
		1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		ND	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ne	ND	1.0
		tert-butylbenzene		3.1	1.0
		1,2,4-trimethylbenze	ne	ND	1.0
		sec-butylbenzene		3.3	1.0
		1,3-dichlorobenzene)	ND	1.0
		1,4-dichlorobenzene)	ND	1.0
		1,2-dichlorobenzene)	ND	1.0
		p-isopropyltoluene		ND	1.0
		n-butylbenzene		1.6	1.0
		1,2,4-trichlorobenze	ne	ND	1.0
		naphthalene		ND	1.0
		hexachlorobutadien	е	ND	1.0
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gas	oline Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth		1.3	1.0
		di-isopropyl ether (D		ND	1.0
		ethyl tert-butyl ether		ND	1.0
		tert-amyl methyl eth	•	ND	1.0
Su	rrogates	Result (ug/L)	Result (ug/L) % Recovery		Range (%)
toluene-d ₈	oromethane (20) (20) orobenzene (20)	21.9 110 70 19.8 99.0 70		70 – 1 70 – 1 70 – 1	30
Date Sampl Date Receiv		Date Analyzed: 03/15/05 Method: EPA 8260B		QC Batch #: _	5386

Lab#	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
28841	MW-05	dichlorodifluoromethane	ND	1.0
		chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	23	1.0
		m,p-xylene	16	1.0
		styrene	ND	1.0
		o-xylene	2.6	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
28841 MW-05		isopropyl benzene		9.8	1.0
		1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		22	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ene	2.9	1.0
		tert-butylbenzene		2.4	1.0
		1,2,4-trimethylbenze	ene	30	1.0
		sec-butylbenzene		2.9	1.0
		1,3-dichlorobenzene)	ND	1.0
		1,4-dichlorobenzene)	ND	1.0
		1,2-dichlorobenzene	ND	1.0	
		p-isopropyltoluene	ND	1.0	
		n-butylbenzene 1,2,4-trichlorobenzene		2.6	1.0
				ND	1.0
		naphthalene	3.3	1.0	
		hexachlorobutadien	е	ND	1.0
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gase	oline Additives		
		tert-butyl alcohol (TE	3A)	ND	25
		methyl tert-butyl eth	-	ND	1.0
		di-isopropyl ether (D		ND	1.0
		ethyl tert-butyl ether		ND	1.0
		tert-amyl methyl eth	•	ND	1.0
Sı	ırrogates	Result (ug/L) % Recovery		Acceptance	Range (%)
toluene-d ₈	oromethane (20) (20) lorobenzene (20)	21.3 107 18.9 94.5 20.1 101		70 - 1 70 - 1 70 - 1	130
Date Samp		Date Analyzed: 03/1 Method: EPA	5/05 8260B	QC Batch #: _	5386

Lab#	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
28842	MW-06	dichlorodifluoromethane	ND	1.0
		chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
28842	MW-06	isopropyl benzene		ND	1.0
		1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		ND	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ene	ND	1.0
		tert-butylbenzene		ND	1.0
		1,2,4-trimethylbenze	ene	ND	1.0
		sec-butylbenzene		ND	1.0
		1,3-dichlorobenzene)	ND	1.0
		1,4-dichlorobenzene	:	ND	1.0
		1,2-dichlorobenzene	:	ND	1.0
		p-isopropyltoluene		ND	1.0
		n-butylbenzene		ND	1.0
		1,2,4-trichlorobenze	ne	ND	1.0
		naphthalene		ND	1.0
		hexachlorobutadien	е	ND	1.0
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gas	oline Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth		26	1.0
		di-isopropyl ether (D	OIPE)	ND	1.0
		ethyl tert-butyl ether		ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Su	rrogates	Result (ug/L)	Result (ug/L) % Recovery		Range (%)
toluene-d ₈	oromethane (20) (20) orobenzene (20)	21.8 109 70 - 13 19.5 97.5 70 - 13 20.3 102 70 - 13		30	
Date Samp Date Receiv		Date Analyzed: 03/15/05 Method: EPA 8260B		QC Batch #: _	5386

LABORATORY QUALITY ASSURANCE REPORT

QC Batch #: 5391 **Lab Project #:** 5031503

Sample ID	Compound	Result (ug/L)
MB	TPH/Gas	ND
MB	MTBE	ND
MB	Benzene	ND
MB	Toluene	ND
MB	Ethyl Benzene	ND
MB	Xylenes	ND

	Sample		Result	Spike	%
Sample #	ID	Compound	(ug/L)	Level	Recv.
28837	CMS	TPH/Gas		NS	
	CMS	Benzene	9.14	10.0	91.4
	CMS	Toluene	9.18	10.0	91.8
	CMS	Ethyl Benzene	9.37	10.0	93.7
	CMS	Xylenes	28.5	30.0	95.0

	Sample		Result	Spike	%	
Sample #	ID	Compound	(ug/L)	Level	Recv.	RPD
28837	CMSD	TPH/Gas		NS		
	CMSD	Benzene	9.51	10.0	95.1	4.0
	CMSD	Toluene	9.39	10.0	93.9	2.3
	CMSD	Ethyl Benzene	9.56	10.0	95.6	2.0
	CMSD	Xylenes	29.3	30.0	97.5	2.8

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

 QC Batch #:
 5386
 Lab Project #:
 5031503

Sample ID	Compound Name	Result (ug/L)
MB	1,1-dichloroethene	ND
MB	benzene	ND
MB	trichloroethene	ND
MB	toluene	ND
MB	chlorobenzene	ND

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	21.7	109	70 – 130
toluene-d ₈ (20)	18.7	93.5	70 – 130
4-bromofluorobenzene (20)	19.4	97.0	70 – 130

Sample #	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.
28837	CMS	1,1-dichloroethene	27.8	25.0	111
	CMS	benzene	26.2	25.0	105
	CMS	trichloroethene	24.5	25.0	98.0
	CMS	toluene	24.6	25.0	98.4
	CMS	chlorobenzene	24.4	25.0	97.6

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	22.0	110	70 – 130
toluene-d ₈ (20)	19.5	97.5	70 – 130
4-bromofluorobenzene (20)	19.5	97.5	70 – 130

Sample #	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.	RPD
28837	CMSD	1,1-dichloroethene	24.6	25.0	98.4	12
	CMSD	benzene	26.9	25.0	108	2.6
	CMSD	trichloroethene	24.2	25.0	96.8	1.2
	CMSD	toluene	26.5	25.0	106	7.4
	CMSD	chlorobenzene	25.4	25.0	102	4.0

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	19.5	97.5	70 – 130
toluene-d ₈ (20)	21.7	109	70 – 130
4-bromofluorobenzene (20)	20.4	102	70 – 130

 $\label{eq:mb} \begin{subarray}{ll} MB = Method Blank; \ LCS = Laboratory \ Control \ Sample; \ CMS = Client \ Matrix \ Spike; \ CMSD = Client \ Matrix \ Spike; \ CMSD = Client \ Matrix \ Spike; \ Duplicate \ NS = Not \ Spiked; \ OR = Over \ Calibration \ Range; \ NR = No \ Recovery \end{subarray}$

CHAIN OF CUSTODY LAB PROJECT NUMBER: 5031503

Analytical Sciences
P.O. Box 750336, Petaluma, CA 94975-0336**
110 Liberty Street, Petaluma, CA 94952
(707) 769-3128

			× ×	וררסטר	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	!				LAB SAMPLE #	7000	4202 t	25,55	12000	2000
(Notions Kent	SCS Engineers Project Number: ひいっちらいっ	GEOTRACKER EDF: X Y N	GLOBAL ID: TOGO 416011	COOLER TEMPERATURE	Ç		PAGE 1 OF 1		COMMENTS	1 - 1	1 12	ره اوران	32 C	
	ig g	5550	- (6				×			13/18 5048 Such	1	. >	+	+	_
-	Ž	2	k on		s,	0			+	TOTAL LEAD	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	+	17	1	>
	AME:	ABER:	(chec		24 Hours	72 Hours	Normal			S LUFT METALS	╁	+-	+	+	_
1		CT NU	TIME		7	22			-	EPA 8081 / 8141 / 8082 CAM 17 METALS /	+	╀	+	+	_
9	5	ROJE	ONG						-	PESTICIDES / PCB'S	-	+	+	+	
	SCS ENGINEERS PROJECT NAME:	NEERS	URNAROUND TIME (check one)	ΑB		<u>ء</u>	ري اي			HYDROCARBONS EPA 8270 TRPH / TOG	\vdash	╁	+	+	_
100	2	S ENG	TUR	MOBILE LAB	SAME DAY	48 Hours	5 DAYS	Sisy	1	SEMI-VOLATILE SOLVENTS	Ħ	\dagger	T	t	_
	, ::::::::::::::::::::::::::::::::::::	ပ္တ						A A		OXYGENATED FUEL ADDITIVES M0958 A93		T	<u> </u>	t	-
17.0				Huok	4				-	+ PB SCAVENGERS		T	1	T	_
	ONE	9		9820 Brooks Rd. South	Windsor, CA 95492	8.8				EPA 8260 Full List + Oxy / Fuel Additives BTEX & OXYGENATES			T		-
Total Section	MA	Ó		200Ks	3	P160-888 - Lat				VOLATILE HYDROCARBONS EPA 8260 (FULL LIST)			Γ		_
	TOL	4		8	1020	60				TPH DIESEL / MOTOR OIL MS108 A93			T	Ī	_
	2	开开	<u></u>		3					TPH/GAS/8020 8-MTBE EPA 8015M/8020	×	×	×	;	×
	BILLING INFORMATION	CONTACT: Mr. JIM Biocca	COMPANY NAME:	ADDRESS:		PHONE#:	FAX #:			PRESV. YES/NO	72.5	205	Yes		7
			COMP							# CONT.	ד	T	1	-	5
			/ARD	_						MATRIX	01	0	0 1		C
			BOULEVARD	95403	1+101					TIME	Bio	Silo	255	67.14.	C1 X17
LVIIO		COMPANY NAME: SCS ENGINEERS	ADDRESS: 3645 WESTWIND	SANTA ROSA, CA	CONTACT: Stephen Kniu	6-9461	4-5769			DATE SAMPLED	3 14 05	3/14/05	3/4/05		70 71 8
CONTENT MICHORA		SCS EN	3645 WE	SANTA R	Tepha	PHONE#: (707) 546-9461	FAX#: (707) 544-5769				01	70	. ¿o	700	
Ų		IAME:	RESS:	-7	FACT:) #BNC) **			CLIENT SAMPLE ID.	(B)			97	Τ,
	2	PANY A	Appl		CON	Ŧ	ш				HW-XE	MW-2	MM-3	OF 1	٠ د د
		Š O								Σ Σ	-	2	3	,	•

=				
		SIGNATURE		
RELINQUISHED BY: (JANUA CARLLA	A DATE::	TIME:		
RECEIVED BY:	AATE::	TIME:	RECEIVED BY-LABORATORY:	
RELINQUISHED BY: Pan Meles	DATE:: 3-15-05 TIME: /	TIME: 10'10		3/15/05 10/10
RECEIVED BY:	DATE:	TIME:	SIGNATURE	DATE TIME
				÷

עישיי בות שקתישל

805

2

100

9

MW-80

9

7 7

3/14/05 1100 S

צבו ובעות ליונק

PO Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128